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§Institute for Technological Development and Innovation in Communications, Universidad de Las

Palmas de Gran Canaria, Spain
‡Escuela de Fı́sica, Universidad Central de Venezuela, Venezuela

Abstract

The use of machine learning for disease diagnosis is
gaining popularity due to its ability to process data and
provide accurate results, but optimazing it remains a chal-
lenge. Chagas disease is endemic in Latin America and
has emerged as a health problem in more urban areas.
Early and accurate diagnosis is essential to prevent car-
diac complications, since an estimated 65 million people
are at risk of contracting this disease. This study used
a database of 292 subjects distributed into three groups:
healthy volunteers (Control group), asymptomatic Chaga-
sic patients (CH1 group) and seropositive Chagasic pa-
tients with incipient heart disease (CH2 group). A densely
connected neural network was used to classify them into
their respective groups. The network received as input
the Approximate Entropy values of each individual, which
were calculated from the 24-hour circadian profiles every 5
minutes (288 RR subsegments). Time series data augmen-
tation algorithms were applied during the training phase
to improve the classification results. This approach al-
lowed to achieve 100% accuracy and precision, validated
by the ROC curve with AUC values of 1, proving to be a ro-
bust approach for early diagnosis and prevention of heart
complications in Chagas disease.

1. Introduction

Chagas disease, or American trypanosomiasis, is caused
by Trypanosoma cruzi. This vector is present in 21 conti-
nental countries in the Region of the Americas. Approx-
imattely 65 million people are at risk of contracting the
infection, which causes approximately 12,000 deaths an-
nually [1]. Additionally, in recent decades, cases have
been detected in other non-endemic regions of the Ameri-
cas [2]. The disease presents acutely and, if not diagnosed
and treated in time, becomes a chronic disease. The most

important consequence is chronic chagasic cardiomyopa-
thy, which occurs in 20-40% of infected persons and can
be potentially lethal.

Given that it is considered a neglected tropical disease
[2], the use and optimization of non-invasive and low-cost
diagnostic tools is paramount. In this context, machine
learning has become popular as a promising technique for
disease diagnosis, including Chagas disease [9–11]. De-
spite this, optimization of these tools remains a challenge,
due to, among other reasons, the limited amount of avail-
able data. This highlights the need to implement data aug-
mentation techniques to improve their efficiency.

Although image analysis techniques are widely used,
heart rate variability (HRV) analysis can be very useful due
to its prognostic significance. In particular, Approximate
Entropy has been shown to be a valuable statistic for the
study of congestive heart failure [5,6], one of the main clin-
ical manifestations of Chagas disease [7], and it was also
used to identify significant differences at different times of
the day between groups of patients with this disease [8].
Therefore, the present work proposes the development and
optimization of a densely conected neural network using
the HRV based on the Approximate Entropy of a database
of patients with Chagas disease, using data augmentation
techniques, which, although are more common in image
analysis, they are also applicable to time series.

2. Method

2.1. Database

This research employed used the ECG database of the
Tropical Medicine Institute of the Universidad Central de
Venezuela, which includes information on 292 individu-
als who underwent various tests with their respective in-
formed consent. These tests included clinical evaluation,
Gerreiro Machado-Serology test, chest X-ray, echocardio-
gram, electrocardiogram and Holter recording (24 hours).
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The patients and volunteers were divided into three groups:
the Control group, consisting of 83 healthy persons (vol-
unteers), the CH1 group composed of 102 infected patients
only with positive Machado-Gerreiro serology test, and the
CH2 group composed of 107 seropositive patients with in-
cipient heart disease, involvement of first-degree atrioven-
tricular block, sinus bradycardia or right bundle branch
block of His and were not receiving treatment or medi-
cation. ECG signals were recorded at a frequency of 500
Hz with a resolution of 12 bits.

2.2. Data preprocessing

QRS complexes were obtained from the ECG using the
Pan-Tompkins [12] algorithm, then generating the 288 5-
minute RR tachograms for each subject from the database.
In addition, a filter used in [8] was implemented to remove
noise.

Given that we are working with time series data, Ap-
proximate Entropy (ApEn) was applied to each 5-minute
RR subsegment of each subject according to the definition
provided by Pincus [13]. In this definition, if the time se-
ries data consists of N elements:

ApEn(m, r,N) = − 1

N −m

N−m∑
i=1

log

(
Ai

Bi

)
(1)

where m is the embedding dimension, r is a threshold and
Ai and Bi are the proximity measures between the embed-
ding vectors in m and m+ 1 dimensions respectively.

After testing values of m ranging from 1 to 4, and r
ranging from 10% to 50% of the standard deviation (SD),
the parameters m = 2 and r = 40% of the SD were ul-
timately selected. These values were chosen due to their
ability to effectively discriminate among the three groups,
as well as between each group and the others.

Finally, some missing ApEn data (produced by noise fil-
tering and the database itself) were interpolated using the
Matlab function fillgaps in order to predict missing data in
a series. Thus, each subject was characterized by a com-
plete record of 288 ApEn values.

2.3. Network architecture and data aug-
mentation

A Densely Connected Neural Network was imple-
mented in Pyhton, using Keras and Scikit-learn, with a se-
quential model and dense layers. 288 ApEn values were
the input layer nodes, which were previously standardized.
The outputs corresponded to the three groups: Control,
CH1 and CH2.

The Adam optimizer was used with a small learning
rate. The loss function was categorical cross entropy, and
the activation function is chosen according to the training,

except in the last layer, where it was softmax. All other
hyperparameters were adjusted based on the network train-
ing.

For the purpose of this study, data were divided ran-
domly as follows: 70% of 292 subjects constituted the
training set, and the other 30% the test set. Additonally,
a validation set was considered and involved 30% of the
training set during the network training phase.

To enhance the performance of the model, data augmen-
tation techniques were introduced. These techniques are
known for their ability to increase the generalization ca-
pacity of machine learning models by increasin the sample
size (subjects) in the training set. Most of these are in-
spired by image recognition. Thus, scaling and jittering
algorithms were selected as augmentation algorithms be-
cause of their great ability to preserve the temporal pattern
of the data [14].

3. Results

An optimal 3-hidden layer architecture was found with
15, 10 and 8 neurons respectively. The activation func-
tion was sigmoid in all layers except the output layer. The
Adam optimizer was used with a learning rate of 0.002,
and the training was limited to 200 epochs with a batch size
of 10. To mitigate overfitting, an earlystopping function
was implemented, which stopped the training when the
validation loss did not decrease for 5 consecutive epochs.

Figure 1. Confusion matrix without data augmentation

To asses the performance of the model, we initially ex-
aminated the results without implemented data augmenta-
tion. Figure 1 displays the confusion matrix, and with it,
the classification results of our model were as follows: for
the Control group we obtained a precision of 0.889, recall
of 0.960 and F1-score of 0.923. For the CH1 group, the
precision was 1.000, recall 1.000 and F1-score 1.000. And
for the CH2 group the results were 0.969 for precision,
0.912 for recall and 0.939 for F1-score. The accuracy of
the model reached 95.5%, and the overall weighted preci-
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sion was 95.6%.

To observe the success rate, the receiver operating char-
acteristic curve (ROC curve) was plotted. Being a multi-
class classification, an extended version of the ROC curve
had to be applied with the micro and macro averaging al-
gorithm in the scikit-learn library.

Figure 2. ROC curve without data augmentation

Thus, Figure 2 shows one curve for each group (one ver-
sus all) and two general curves for the entire classification.
Since all AUC values are very close to 1, this confirms a
good performance of the model, even in the absence of reg-
ularization or data augmentation techniques. However, as
these are neural networks, the percentage can be improved.

We applied the aforementioned data augmentation tech-
niques while keeping the same network architecture. Rows
(patients) were added to the standardized ApEn matrix of
the original training set. Consequently, the network was
trained with 3 times the size of the original training set.
Data augmentation was not applied to the test set to evalu-
ate the performance of the network with original data.

Figure 3. Confusion matrix with data augmentation

The confusion matrix, using the same data division
(70% training and 30% test) is plotted in Figure 3. It is

Figure 4. ROC curve with data augmentation

evident that all evaluation metrics (precision, recall and
F1-score) for each group as well as the overall metrics
achieved a perfect score of 100% This is supported by the
multiclass ROC curve (Figure 4), whose AUC values were
exactly 1.

Furthermore, taking into account the larger dataset re-
sulting from data augmentation, we explored variations in
the division of the original dataset (training and test). The
overall classification metrics are summarized in the table
1, revealing that the accuracy of the model is higher than
90% even when only 30% of the original patients are used
for training.

Table 1. Overall evaluation metrics, using data augmenta-
tion for different original patient divisions

Test set Accuracy Overall
precision

Weighted
overall preci-
sion

30% (88 subjects) 100.0% 100.0% 100.0%
40% (117 subjects) 98.3% 98.1% 98.3%
50% (146 subjects) 97.3% 97.1% 97.3%
60% (176 subjects) 94.9% 94.8% 95.0%
70% (205 subjects) 90.7% 90.5% 90.7%

4. Discussion and conclusions

Approximate Entropy proved to be a powerful statisti-
cal tool to characterize and discriminate time series data
for Chagas Disease. We achieved strong performance with
our neural network model even without the use of regular-
ization techniques or data augmentation algorithms. How-
ever, in pursuit of a reliable diagnosis, we decided to im-
plement data augmentation algorithms, despite already ob-
taining highly acceptable results

Data augmentation tripled the number of training sam-
ples and an excellent classification capacity was achieved:
100% accuracy and precision for the same division of the
original data. Likewise, by training with a higher num-
ber of samples, it was possible to decrease the number of
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original patients used for training, obtaining a classifica-
tion accuracy of more than 90% even when only 30% of
original patients were utilized.

Previous works have already documented high classifi-
cation accuracy when employing machine learning tech-
niques for diagnosing Chagas Disease. Cornejo et al. [15]
and Rodriguez et al. [16] achieved accuracies of 91% and
98% respectively for the same database, using a deep neu-
ral network. Furthermore, 100% accuracy was already
reported in the study by Hevia et al.[17] for the control
versus acute infection and control versus chronic infection
groups, using temporal data from four modalities in mice.

These exceptional prior studies share the same obstacle:
a limited number of patients or samples. In constrast, our
approach aimed to overcome this limitation by implement-
ing training data augmentation, achieving excellent pre-
cision. Therefore, the proposed approach is presented as
a highly reliable diagnostic tool that only requires ECG
recordings.

Finally, it is worth highlighting that a larger, non-
synthetic, and updated database would be a good way to
improve the scope of this diagnostic method and contribute
to timely treatment.
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